vonNeumannProfessoren


John von Neumann Gastprofessur


John von Neumann
Die John von Neumann Gastprofessur erlaubt herausragenden Wissenschaftlern aus aller Welt, ein Semester am TUM Zentrum für Mathematik zu forschen. Sponsor ist das Bayerische Staatsministerium für Wissenschaft, Forschung und Kunst. Die Preisträger halten eine "John von Neumann Gastvorlesung", eine Einführung in ihr Forschungsgebiet für fortgeschrittene Studenten.

Die Gastprofessur ist nach John von Neumann benannt, einem der führenden Mathematiker des 20. Jahrhunderts. Mit seinen mathematischen Ideen leistete von Neumann wegweisende Beiträge zu vielen verschiedenen Gebieten wie der Quantenmechanik, Spieltheorie, Fluiddynamik und dem wissenschaftlichen Rechnen. Insbesondere stellte er 1932 mit seinem bekannten Buch die damals neue Quantenmechanik auf mathematisch rigorosen Boden, und führte mit seinem Design des MANIAC-Rechners die bahnbrechenden Ideen des flexiblen Arbeitsspeichers und des Parallelrechnens ein.

Im Jahr 1953 wurde ihm die Ehrendoktorwürde der Technischen Hochschule München verliehen.


Aktuelle Preisträger/innen
Frühere Preisträger/innen
Kontakt


Aktuelle Preisträger/innen im Sommersemester 2016


Prof. Dr. Bruno Nachtergaele Prof. Dr. Bruno Nachtergaele, University of California, Davis
John von Neumann Vorlesung: Quantum Spin Systems
Weitere Informationen

Abstrakt der Vorlesung

i. The first part is devoted to introducing the basic mathematical framework for the study of quantum spin systems in a form suitable for applications in condensed matter physics as well as in quantum information and computation theory. This includes the construction of infinite systems by taking the thermodynamic limit, Hilbert space techniques based on the GNS representation, Lieb-Robinson bounds,a survey of the main questions the theory aims to address, and a discussion of several important model Hamiltonians. ii. The introduction of the AKLT model in 1988 by Affeck, Kennedy, Lieb, and Tasaki set in motion a series of new developments in the study of quantum spin systems that continue to have a profound impact on research on quantum spin models today. We will discuss the theory of Matrix Product States (aka Finitely Correlated States), Tensor Networks, the Density Matrix Renormalization Group, and techniques to estimate the spectral gap above the ground state. iii. The third part of the course will focus on specific properties of gapped ground states and their phase structure, guided by the analysis of specific models. This will include models with topological order. In each case we will study the ground states, the spectral gap above the ground state and the nature of the elementary excitations. Of particular interest are the anyonic excitations associated with topological order in two dimensional models.

Prof. Dr. Gary Froyland Prof. Dr. Gary Froyland, University of New South Wales
John von Neumann Vorlesung: Ergodic Theory, Dynamical Systems, and Applications
Weitere Informationen

Abstrakt der Vorlesung

This is a mathematics course for students and researchers interested dynamical systems, in particular ergodic theory.Topics to be treated include:
  • Subshifts of finite type and Markov chains
  • Induced and product transformations
  • Ergodic theorems
  • Evolution of densities and the Perron-Frobenius operator
  • Piecewise C2 maps and existence of ACIMs
  • Ulam’s method and numerical approximation of ACIMs
  • Entropy

Prof. Dr. Christian Genest Prof. Dr. Christian Genest, McGill University, Montreal
John von Neumann Vorlesung: Rank-Based Nonparametric Statistics
Weitere Informationen

Abstrakt der Vorlesung

Comparison of two treatments from independent samples: The role of ranks in statistical inference; definition and motivation of Wilcoxon’s rank-sum test; asymptotic null distribution and power of the test in the shift model; comparison with Student’s t-test; estimation of the treatment effect; handling of ties; related tests due to Kolmogorov–Smirnov, Siegel–Tukey, etc. Comparison of two treatments from paired samples: Motivation for paired experiments; definition and properties of the sign test; introduction of Wilcoxon’s signed-rank test; asymptotic null distribution and power of the test in the shift model; comparison with Student’s paired t-test; estimation of the treatment effect; further developments. Comparison of several treatments from independent samples: Introduction to nonparametric analysis of variance; definition of the Kruskal–Wallis test; null distribution, power and efficiency of the test; specialization to the case of 2xt contingency tables; consideration of one-sided, selection and ranking procedures; further developments. Comparison of several treatments from randomized complete blocks: Ranks in randomized complete block designs; definition and properties of Friedman’s test; special cases: Cochran’s and McNemar’s tests; aligned rank tests; population models; efficiency considerations. Multivariate rank-based methods: Tests for independence, randomness, and trend. Rank-based tests for trend; nonparametric measures of dependence: Kendall’s tau and Spearman’s rho; rank tests for randomness and independence based on these measures; copulas; locally optimal and blanket tests of independence for copula models; asymptotic relative efficiency comparisons.

Prof. Dr. Johanna G Neslehova Prof. Dr. Johanna G Neslehova, McGill University, Montreal
John von Neumann Vorlesung: Rank-Based Nonparametric Statistics
Weitere Informationen

Abstrakt der Vorlesung

Comparison of two treatments from independent samples: The role of ranks in statistical inference; definition and motivation of Wilcoxon’s rank-sum test; asymptotic null distribution and power of the test in the shift model; comparison with Student’s t-test; estimation of the treatment effect; handling of ties; related tests due to Kolmogorov–Smirnov, Siegel–Tukey, etc. Comparison of two treatments from paired samples: Motivation for paired experiments; definition and properties of the sign test; introduction of Wilcoxon’s signed-rank test; asymptotic null distribution and power of the test in the shift model; comparison with Student’s paired t-test; estimation of the treatment effect; further developments. Comparison of several treatments from independent samples: Introduction to nonparametric analysis of variance; definition of the Kruskal–Wallis test; null distribution, power and efficiency of the test; specialization to the case of 2xt contingency tables; consideration of one-sided, selection and ranking procedures; further developments. Comparison of several treatments from randomized complete blocks: Ranks in randomized complete block designs; definition and properties of Friedman’s test; special cases: Cochran’s and McNemar’s tests; aligned rank tests; population models; efficiency considerations. Multivariate rank-based methods: Tests for independence, randomness, and trend. Rank-based tests for trend; nonparametric measures of dependence: Kendall’s tau and Spearman’s rho; rank tests for randomness and independence based on these measures; copulas; locally optimal and blanket tests of independence for copula models; asymptotic relative efficiency comparisons.



Frühere Preisträger/innen

Wintersemester Sommersemester
2016
Prof. Dr. Francis Filbet, Universität Lyon
Prof. Dr. Helmut Pottmann, TU Wien
Prof. Dr. Maurice Rojas, Texas A&M University
2015
Prof. Dr. Andrea Braides, Università di Roma Tor Vergata Prof. Dr. Ernst Eberlein, Universität Freiburg
Prof. Dr. Peter Markowich, University of Cambridge Prof. Dr. Matteo Novaga, Università di Pisa
Prof. Dr. Giuseppe Savaré, Università di Pavia
2014
Prof. Dr. Götz Pfander, Jacobs Universität Bremen Prof. Dr. Mauro Maggioni, Duke University
Prof. Dr. David Perez-Garcia, Universität Madrid
Prof. Dr. Dimitris N. Politis, University of California, San Diego
2013
Prof. Dr. Sergii Koliada, Academy of Sciences, Kiev
Prof. Dr. Jesus De Loera, University of California, USA
Prof. Dr. Marc Noy, Universität Barcelona
Prof. Dr. Peter Song, University of Michigan, USA
2012
Prof. Dr. Ansgar Jüngel, TU Wien Prof. Dr. Zalman Balanov, University of Texas
Prof. Dr. Serguei Popov, University of Campinas, Brasilien Prof. Dr. Wieslaw Krawcewicz, University of Texas, Dallas
Prof. Dr. Wim Schoutens, Universität Leuven, Belgien Prof. Dr. Sanjoy Mitter, MIT
Prof. Dr. Marina Vachkovskaia, University of Campinas, Brasilien Prof. Dr. Reinhold Schneider, TU Berlin
Alle bisherigen John von Neumann Gastprofessuren

Kontakt

Wissenschaftliche Leitung: Prof. Dr. Massimo Fornasier

 

TUM Mathematik Rutschen TUM Logo TUM Schriftzug Mathematik Logo Mathematik Schriftzug Rutsche

picture math department

Impressum  |  Datenschutzerklärung  |  AnregungenCopyright Technische Universität München